НГУЕН Ван Шон

УПРАВЛЕНИЕ МЕХАНИЧЕСКОЙ СИСТЕМОЙ, РАЗМЕЩЕННОЙ НА ПОДВИЖНОМ ОСНОВАНИИ

Специальность 05.13.01 — Системный анализ, управление и обработка информации (промышленность)

Автореферат диссертации на соискание ученой степени кандидата технических наук

Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего образования «Тульский государственный университет»

Научный руководитель: Доктор технических наук, профессор

ЛАРКИН Евгений Васильевич

Официальные оппоненты: Румянцев Владимир Львович, доктор

> технических наук, профессор, АО «Центральное конструкторское бюро аппаратостроения», заместитель

начальника отдела

Привалов Александр Николаевич, доктор технических наук, профессор, ФГБОУ

ВО «Тульский государственный педагогический университет им.

Л.Н.Толстого», кафедра информатики

и информационных технологий,

профессор

ФГБОУ ВО «Рязанский государственный Ведущая организация:

радиотехнический университет»

Защита состоится «26» сентября 2018 года в 14-00 часов на заседании диссертационного совета Д 212.271.05, созданного на базе ФГБОУ ВО «Тульский государственный университет» по адресу: 300012, г. Тула, пр. Ленина, 92, (12-105).

С диссертацией можно ознакомится в библиотеке ФГБОУ ВО «Тульский государственный университет» по адресу: 300012, г. Тула, пр. Ленина, 92 и на сайте http://tsu.tula.ru/science/dissertation/diss-212-271-05/nguyen van schon/

Автореферат разослан «12» июля 2018 г.

Ученый секретарь диссертационного совета Моното Соколова Марина Юрьевна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Механические системы, размещенные на подвижном основании, достаточно широко встречаются на практике для работы с потенциально-опасными объектами (ПОО). Характерной особенностью подобных систем является недостаточно высокая точность выполнения механических операций, что связано с колебанием основания при их работе. В то же время при выполнении механических операций вблизи ПОО требуется высокая точность позиционирования рабочего органа механической системы. Для повышения точности позиционирования используется обратная связь по положению собственно рабочего органа, однако в случае ПОО использование контактных датчиков обратной связи проблематично. В подобных системах целесообразно использовать информацию о пространственных координатах рабочего органа, которая может быть получена из видеопотока подсистемы технического зрения. В подсистемах подобного типа информация, получаемая с сенсора, содержит не только данные о положении рабочего органа, но также данные о положении других предметов сцены. Поэтому программная обработка данных должна включать следующие операции: поиск ПОО на изображении, локализация области изображения, в которой содержится образ объекта, определение плоских и далее пространственных координат ПОО, замыкание обратной связи по положению рабочего органа.

Проблема замыкания обратной связи по положению рабочего органа, измеренному дистанционно, в том числе с использованием подсистемы технического зрения, в настоящее время проработана недостаточно. Существующие системы не обеспечивают достаточной точности позиционирования, требуемой для работы с ПОО. Также остаются недостаточно исследованными вопросы обоснования выбранных методов обработки информации и управления положением рабочего органа. Все это объясняет необходимость и актуальность исследований, проведенных в диссертации.

Объектом исследования диссертационной работы являются механическая система, расположенная на подвижном основании, и ее система управления с подсистемой технического зрения в качестве датчика пространственного положения рабочего органа.

Предметом исследования диссертационной работы является показатели точности позиционирования рабочего органа механической системы, размещенной на подвижном основании, и методы достижения заданных показателей.

Общие вопросы теории автоматического управления развиты в работах Е.П. Попова, С.Л. Зенкевича, А.С. Ющенко, Е.И. Юревича, В.А. Бесекерского и др. Вопросы обеспечения управления с использованием технического зрения исследовали: Б.А. Алпатов, А.А. Большаков, Ю.В. Визильтер, С.Ю. Желтов, В.Г. Гетманов и др. Из зарубежных специалистов подобные исследования проводили И. Собель, И. Добеши, Б. Яне, П. Корк, А.С. Сандерсон, Л.И. Вейсс и др.

Из всех существующих подходов к разработке метода управления положением рабочего органа в диссертации использованы подходы, основанные на аналитических методах математического моделирования механики и оптики, а

также обработки изображений. Для этого в диссертации использованы: теоретическая механика, теория управления, теория цифровой обработки сигналов.

Целью диссертации повышение точности позиционирования рабочего органа механической системы, размещенной на подвижном основании.

Для достижения поставленной цели в работе решены следующие задачи:

- 1) На основании анализа существующих механических систем, размещенных на подвижном основании проведено обоснование выбора способа оценки пространственных координат рабочего органа механической системы.
- 2) Проведена разработка функциональной схемы, обеспечивающей управление механической системой с использованием подсистемы технического зрения в качестве датчика обратной связи.
- 3) Построена математическая модель механической системы на подвижном основании, как объекта управления.
- 4) Разработан метод стабилизации рабочего органа механической системы при слежении за ПОО с использованием в качестве датчика обратной связи подсистемы технического зрения.
- 5) Разработан математического аппарат, алгоритмы и программы для расчета пространственного положения рабочего органа относительно ПОО с использованием подсистемы технического зрения.
- 6) Разработан метод управления положением рабочего органа, обеспечивающий повышенную точность позиционирования.
- 7) Проведена апробация предложенных методик на уровне компьютерного моделирования.

Научная новизна диссертации заключается в следующем.

- 1) Построена математическая модель системы выполнения механических операций по перемещению груза в пространстве, отличающаяся от известных тем, что в ней учтено, размещение рабочего органа на подвижном основании; это позволяет разработать метод стабилизации рабочего органа в Земной системе координат.
- 2) Разработан метод оценки пространственных координат рабочего органа относительно ПОО, отличающийся от известных тем, что информация о положении извлекается из образа границы между ПОО и фоном, что позволяет повысить точность позиционирования рабочего органа относительно ПОО.
- 3) Разработан ускоренный метод расчета координат ПОО внутри окна и слежения за положением ПОО при перемещении рабочего органа, отличающийся от известных тем, что в каждом кадре формируются рамки, центры которых совпадают с точками на границе ПОО в предыдущем кадре, это позволяет ускорить расчет следующего положения центра и таким образом снимает временные ограничения по включению подсистемы технического зрения в контур обратной связи.

Практическая значимость работы состоит в том, что методы, научные и технические решения, полученные в диссертации, могут быть использованы в инженерной практике разработки систем управления положением рабочего органа с повышенными технико-эксплуатационными характеристиками.

Достоверность полученных результатов подтверждается корректным применением аналитических математических моделей системы, расположенной на подвижном основании, и подсистемы технического зрения, а также результатами компьютерного моделирования объекта исследования.

Положения, выносимые на защиту:

- 1) Математическая модель системы выполнения механических операций по перемещению груза в пространстве, в которой учтено размещение рабочего органа на подвижном основании.
- 2) Метод оценки пространственных координат рабочего органа относительно ПОО, в котором информация о положении извлекается из образа границы между ПОО и фоном.
- 3) Ускоренный метод расчета координат ПОО внутри окна и слежения за положением ПОО при перемещении рабочего органа, в котором для ускорения расчета координат в каждом кадре формируются рамки, центры которых совпадают с точками на границе ПОО в предыдущем кадре.

Апробация результатов. Основные результаты работы докладывались на следующих конференциях.

- 1) Конференции НТО РЭС им. Попова. Тула, Тульский государственный университет, 2017.
- 2) Международная научно-техническая конференция «Интеллектуальные и информационные системы». Тула, Тульский государственный университет, 2017.
- 3) XXIX международная научная конференция «Математические методы в технике и технологиях ММТТ 29». СПб, СПбГТИ (ТУ), 2016.
- 4) Ежегодные научно-практические конференции профессорскопреподавательского состава Тульского государственного университета 2015-2018 гг.

Публикации. Основные результаты диссертации опубликованы в 15 печатных работах, в том числе в 9 статьях в рецензируемых изданиях, рекомендуемых ВАК РФ по специальности диссертации.

Структура и объем работы. Диссертация состоит из введения, четырех глав, заключения, списка использованной литературы из 144 наименований, и приложения, содержащего акт внедрения научных результатов исследований в учебный процесс. Материал изложен на 128 страницах машинописного текста и содержит 38 рисунков и 3 таблицы.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы, сформулированы предмет, цели и задачи исследования, методы и задачи исследования, дана общая характеристика работы, обозначены основные положения, выносимые на защиту, а также приведены краткие аннотации глав диссертации.

В первой главе проведен анализ конструкций механических систем, размещенных на подвижном основании, и применяемых при выполнении технологических операций над потенциально-опасными объектами. Построена функциональная схема типовой системы. Показано, что в систему входят: ос-

нование, исполнительный механизм, вязкоупругие опоры и подсистема технического зрения.

Определено, что основным фактором, понижающим точность позиционирования, является нежесткость опор, поэтому при выполнении механических операций возникают переходные процессы, что приводит к неконтролируемому перемещению рабочего органа вблизи ПОО.

Проведен анализ двух типов систем для стабилизации положения, и сделан вывод о целесообразности использования систем с обратной связью. Предложено для повышения точности позиционирования рабочего органа измерять его положение относительно ПОО. Показано, что традиционные датчики положения в системе очувствления (энкодеры, инклинометры, акселерометры и т.д.) не позволяют выполнять такое измерение или выполняют с высокой погрешности, что может приводить к несанкционированным контактам с ПОО.

Сделано заключение о целесообразности применения подсистемы технического зрения для измерения положения рабочего органа относительно ПОО в Земной системе координат, и использование этой информации для реализации обратной связи. На основании анализа и классификации применяемых видео-сенсоров сделан вывод о целесообразности использования стереозрения, в котором используются две телекамеры, работающие синхронно, что позволяет восстановить расположение объектов в трехмерном пространстве.

Проведен анализ методов, используемых для обработки изображений, с целью получения информации о местоположении объекта на фоне других предметов сцены, и сделан вывод о том, что для получения высокой точности определения целесообразно использовать обработку сигналов в сигнальноспектральной области.

Вторая глава посвящена разработке математической модели механической системы, расположенной на подвижном основании, как объекта управления. Разработана кинематическая схема системы, включающей жесткое основание массой m_0 , установленное на 2N вязкоупругих опор, размещенных по краям основания (рис. 1). Левая и правая i-е вязкоупругие опоры установлены на расстоянии L_{xi} от поперечно-вертикальной плоскости симметрии основания. Жесткость и вязкость всех опор одинаковая, соответственно равна ζ и χ . На основание в точке, лежащей в продольно-вертикальной плоскости симметрии, отстоящей от центра масс на расстоянии e от центра масс основания C_P , установлен шарнир для крепления механической системы. В свою очередь механическая система включает M стержней, последовательно соединенных друг с другом вращательными шарнирами одной степени подвижности. Каждый i-й стержень имеет длину l_i и сосредоточенную массу m_i , которая находится в точке C_i .

Земная неподвижная система координат OXYZ сформирована следующим образом: начало O совпадает с положением точки C_P ; ось Z перпендикулярна с плоскостью основания находящегося в состоянии равновесия, и направлена верх; ось X направляется от точки O к центру передний стороны основания; ось Y направлена так, что совместно с ними образует правую систему координат. Связанная подвижная система координат $O_PX_PY_PZ_P$: начало O_P совпадает с точкой C_P ; ось Z_P перпендикулярна с плоскостью основания и направ-

лена верх; ось X_P направляется от точки C_P к центру передний стороны основания; ось Y_P образует правую систему координат совместно с осями X_P и Z_P . Системы координат i-го стержня ($i=\overline{1,M}$) выбираются на основе следующих правил: ось Z_{i-1} направлена вдоль i-го шарнира; начало координат O_i выбирается в точке пересечения осей Z_{i-1} и Z_i , или в конце i-го стержня, если оси Z_{i-1} и Z_i не пересекаются; ось X_i перпендикулярна осям Z_{i-1} , Z_i ; ось Y_i направлена так, что совместно с осями X_i и Z_i образует ортогональную правую систему координат; оси Z_{M-1} и Z_M сонаправлены.

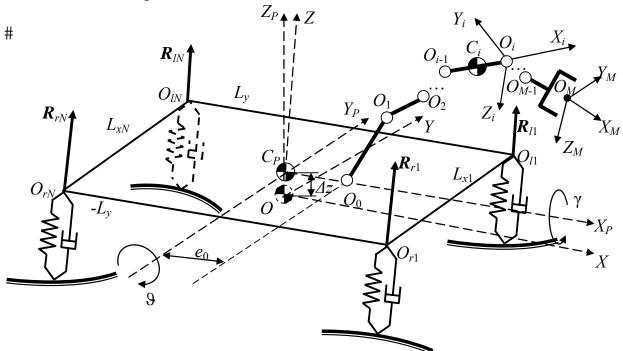


Рис. 1. Кинематическая схема механической системы, размещенной на подвижном основании

Переход от i-й системы координат к (i-1)-й системе координат определяется следующей матрицей:

$$\mathbf{T}_{i-1}^{i} = \begin{pmatrix}
\cos q_{i} & -\cos \alpha_{i} \sin q_{i} & \sin \alpha_{i} \sin q_{i} & a_{i} \cos q_{i} \\
\sin q_{i} & \cos \alpha_{i} \cos q_{i} & -\sin \alpha_{i} \cos q_{i} & a_{i} \sin q_{i} \\
0 & \sin \alpha_{i} & \cos \alpha_{i} & d_{i} \\
0 & 0 & 0 & 1
\end{pmatrix}, i = \overline{1, M}, \tag{1}$$

где q_i — угол поворота оси X_{i-1} вокруг оси Z_{i-1} до ее совпадения с осью X_i ; d_i — расстояние от точки O_{i-1} до точки пересечения осей Z_{i-1} и X_i , измеренное в направлении оси Z_{i-1} ; a_i — расстояние от точки пересечения осей Z_{i-1} и X_i до точки O_i , измеренное в направлении оси X_i ; α_i — угол поворота оси Z_{i-1} вокруг оси X_i до ее совпадения с осью Z_i .

На систему действуют внешние силы тяжести, силы реакции в опорах. В статическом состоянии, механическая система находится в равновесии. Для удержания стержней под углами в равновесии под действием внешних сил приводы создают в шарнирах статические внутренние моменты. В динамическом режиме стержни приводятся в движение динамическими внутренними моментами, создаваемыми приводами. При этом из-за нежесткости возникают движе-

ния опор: i-я правая и левая опоры сжимаются соответственно на величины Δz_{ri} , Δz_{li} относительно статического положения. В результате основание осуществляет движение центра масс Δz по оси Z_P , а также по углам тангажа ϑ и крена γ . Эти величины носят характер дифференциального перемещения. Поэтому переходная матрица дифференциального преобразования от системы координат $C_P X_P Y_P Z_P$ к Земной системе координат OXYZ имеет вид:

$$\boldsymbol{T}^{P} = \begin{pmatrix} 1 & 0 & 9 & 0 \\ 0 & 1 & -\gamma & 0 \\ -9 & \gamma & 1 & \Delta z \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$
 (2)

Получены динамические уравнения движения механической системы в отклонениях от статического режима при M входах $\mu_1, \mu_2, ..., \mu_M$ — динамические внутренние моменты, создаваемые M приводами, и (M+3) выходах Δz , ϑ , γ , $q_1, q_2, ..., q_M$, имеющие вид:

$$\begin{cases}
\mu_{i} = -\mathbf{z}_{i-1}^{\theta} \left\{ \sum_{j=i}^{M} \left[\left(\overrightarrow{O}_{i-1}, \overrightarrow{C}_{j} \right) \times \mathbf{F}_{Ij} \right] \right\}, i = \overline{1, M}; \\
2N(\zeta \Delta z + \chi \Delta \dot{z}) - 2(\zeta \vartheta + \chi \dot{\vartheta}) \sum_{i=1}^{N} L_{xi} + m_{0} \Delta \ddot{z} = \mathbf{z}_{P}^{\theta} \sum_{i=1}^{M} \mathbf{F}_{Ii}; \\
2(L_{y})^{2} N(\zeta \gamma + \chi \dot{\gamma}) + I_{X_{P}X_{P}} \ddot{\gamma} = \mathbf{x}_{P}^{\theta} \sum_{i=1}^{M} \left[\left(\overrightarrow{C}_{P}, \overrightarrow{C}_{i} \right) \times \mathbf{F}_{Ii} \right]; \\
-2(\zeta \Delta z + \chi \Delta \dot{z}) \sum_{i=1}^{N} L_{xi} + 2(\zeta \vartheta + \chi \dot{\vartheta}) \sum_{i=1}^{N} (L_{xi})^{2} + I_{Y_{P}Y_{P}} \ddot{\vartheta} = \mathbf{y}_{P}^{\theta} \sum_{i=1}^{M} \left[\left(\overrightarrow{C}_{P}, \overrightarrow{C}_{i} \right) \times \mathbf{F}_{Ii} \right]
\end{cases}$$
(3)

где θ — знак транспонирования матриц; \mathbf{x}_i , \mathbf{y}_i , \mathbf{z}_i — орты системы координат $O_i X_i Y_i Z_i$ в проекциях на Земную систему координат; \mathbf{F}_{Ii} — сила инерции i-го стрежня; $I_{X_P X_P}$, $I_{Y_P Y_P}$ — осевые моменты инерции основания относительно $C_P X_P Y_P Z_P$ по осям $C_P X_P$ и $C_P Y_P$; $\left(\overrightarrow{O_i}, \overrightarrow{C_j} \right)$ — вектор, связывающий начало O_i и конец C_i в проекциях на систему координат OXYZ.

С применением преобразования Лапласа при нулевых начальных условиях, система (3) преобразуется в алгебраическую систему из M+3 линейных уравнений с M+3 неизвестными. Решением системы является зависимость M+3 выходов Δz , ϑ , γ , q_1 , q_2 , ..., q_M от M входов μ_1 , μ_2 , ..., μ_M . Отсюда, элементарная передаточная функция с входом μ_i и выходом q_j определяется как:

$$W_{q_j/\mu i} = q_j(\mu_1, \mu_2, ..., \mu_M) \Big| \mu_1 = \mu_2 = ... = \mu_{i-1} = \mu_{i+1} = ... = \mu_M = 0; \\ \mu_i = 1,$$
(4)

где
$$i = \overline{1, M}$$
; $j = \overline{1, M + 3}$; $q_{M+1} = \Delta z$; $q_{M+2} = \vartheta$; $q_{M+3} = \gamma$.

Передаточная функция механической системы представляется собой матрицу $M^*(M+3)$ элементарных передаточных функций (рис. 2). Координаты рабочего органа в Земной системе координат определяются:

$$(x^{O_M} y^{O_M} z^{O_M} 1)^{\theta} = T^P T_P^0 T_1^1 T_1^2 ... T_{M-1}^M (0 0 0 1)^{\theta}, (5)$$

где T_P^0 — матрица перехода от системы координат $O_0X_0Y_0Z_0$ к системе координат $C_PX_PY_PZ_P$.

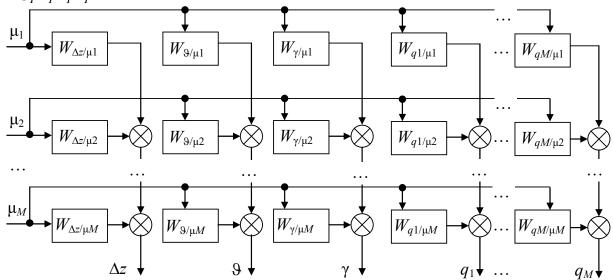


Рис. 2. Передаточная функция механической системы, размещенной на подвижном основании

В третьей главе излагается метод определения положения ПОО в пространстве с использованием подсистемы стереозрения. Система координат $O_C X_C Y_C Z_C$ подсистемы стереозрения выбирается так, чтобы начало O_C совпадало с центром объектива левой телекамеры, ось Z_C совпадала с оптической осью объектива левой телекамеры и ось X_C направлялась вниз, параллельно одной стороны фотоприемника левой телекамеры. Подсистема стереозрения установлена так, чтобы ось Z_C располагалась вдоль последнего стержня и точка O_C была в центре последнего стержня. Такая установка позволяет придержать ПОО в поле зрения при приближении к ПОО. Переходная матрица T_M^C от системы координат $O_C X_C Y_C Z_C$ к системе координат $O_M X_M Y_M Z_M$ определяется:

$$\boldsymbol{T}_{M}^{C} = \begin{pmatrix} 0 & 0 & 1 & l_{M} / 2 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}. \tag{6}$$

Математически описан процесс формирования изображения в подсистеме технического зрения. Показано, что изображение каждой телекамеры является двумерным сигналом вида $f(t_x, t_y)$, где t_x , t_y – номера строки и столбца пиксели в изображении. Изображение несет информацию не только об объекте, но и об окружающей среде. Для выделения ПОО в потоке изображений в связи с изменением формы ПОО от движения точки наблюдения, предложено выделить не целый объект, а только его характерные особенности. Определены два типа характерных особенностей: контрастная граница и контрастное пятно. Для их выделения предложено использовать вейвлет-преобразование вида

$$\Lambda_{f,G}(a,b) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} f(t)G\left(\frac{t-b}{a}\right) dt, \qquad (7)$$

где a — масштаб, a>0; b — сдвиг; $\frac{1}{\sqrt{a}}G\left(\frac{t-b}{a}\right)$ — оконная функция, которая является ядром преобразования; $\Lambda_{f,G}(a,b)$ — результат преобразования.

Предложено для выделения элементов изображения использовать в качестве ядра производные функции Гаусса:

$$G_n(t) = \kappa_n(-1)^n \frac{d^n \exp(-t^2/2)}{dt^n}, \tag{8}$$

где $n = 1, 2, 3, ...; \kappa_n$ – коэффициент пропорциональности.

Предложено границы изображения ПОО выделять с использованием первой производной $G_1(t)$ от Гауссиана, а для выделения объекта «пятно» - с использованием второй производной от Гауссиана $G_2(t)$. С целью сокращения объема вычислений, преобразование (7) предложено проводить для фиксированных значений масштаба a=1, а в качестве ядра использовать первую производную от гауссиана $G_1(t)$.

При поиске объекта в потоке изображений приняты следующие обозначения: $f_k(t_x, t_y)$, $f_k^r(t_x, t_y)$ – изображение в левой и правой телекамерах в момент съемки τ_k соответственно, k – номер кадра, k = 0, 1, 2,...; $f_k^0(t_x, t_y)$, $f_k^{0r}(t_x, t_y)$ – участки изображений $f_k(t_x, t_y)$ и $f_k^r(t_x, t_y)$ с образом объекта. Пусть в момент τ_0 механическая система находится в статическом режиме, оператор задает в левой телекамере участок изображения $f_0^0(t_x, t_y)$ кликом на его центр и вершину, которые соответственно обозначаются $\coprod (t_{x \coprod i}, t_{y \coprod i})$ и $\coprod (t_{x \coprod i}, t_{y \coprod i})$. В указанной оператором рамке поиск особой точки выполняется автоматически, согласно следующей методике.

Mетодика 1. Выделение особой точки в указанной оператором рамке $f_0^0(t_x, t_y)$ с использованием ядра G_1 .

1) Формирование области поиска:

$$f_0^0(t_x, t_y) = \begin{cases} f_0(t_x, t_y) \text{если } t_{x \min} \le t_x \le t_{x \max} \text{ и } t_{y \min} \le t_y \le t_{y \max}; \\ 0 \text{ во всех остальных случаях,} \end{cases}$$
 (9)

где
$$t_{x \min} = t_{x \coprod} - \left| t_{x \coprod} - t_{x \coprod} \right|;$$
 $t_{x \max} = t_{x \coprod} + \left| t_{x \coprod} - t_{x \coprod} \right|;$ $t_{y \min} = t_{y \coprod} - \left| t_{y \coprod} - t_{y \coprod} \right|;$ $t_{y \max} = t_{y \coprod} + \left| t_{y \coprod} - t_{y \coprod} \right|.$

2) Определение вейвлет-преобразования по оси t_x для $f_0^0(t_x, t_y)$:

$$\Lambda_{f_0^0, G_{1x}}(b_x, t_y) = \int_{-\infty}^{\infty} f_0^0(t_x, t_y) G_1(t_x - b_x) dt_x, \qquad (10)$$

где b_x – сдвиг по оси t_x .

3) Определение вейвлет-преобразования по оси t_y для $f_0^0(t_x, t_y)$:

$$\Lambda_{f_0^0, G_{1y}}(t_x, b_y) = \int_{-\infty}^{\infty} f_0^0(t_x, t_y) G_1(t_y - b_y) dt_y, \qquad (11)$$

где b_v – сдвиг по оси t_v .

4) Определение координат особой точки как точки пересечения вертикальной и горизонтальной границы:

$$E_{L0}(t_{x0}, t_{y0}) = \arg\max \left[\Lambda_{f_0^0, G_{1x}}(t_x, t_y) + \Lambda_{f_0^0, G_{1y}}(t_x, t_y) \right]. \tag{12}$$

5) Формирование рамки с центром $\coprod_0 (t_{x0 \coprod}, t_{y0 \coprod})$ и размерами $2\Delta t \times 2\Delta t$ пикселей на экране:

$$t_{x0II} = t_{x0}; \ t_{y0II} = t_{y0}. \tag{13}$$

Для слежения за особой точкой разработана следующая методика.

Memoduka 2. Слежение за особой точкой с использованием ядра G_1 в потоке изображений.

- 1) Инициализация и цикл. Для $k = 1, 2, 3, \dots$ выполнить шаги 2 6.
- 2) Формирование области поиска:

$$f_k^0(t_x, t_y) = \begin{cases} f_k(t_x, t_y) \text{если } t_{xk \min} \leq t_x \leq t_{xk \max} \text{ и } t_{yk \min} \leq t_y \leq t_{yk \max}; \\ 0 \text{ во всех остальных случаях,} \end{cases}$$
(14)

где $t_{xk\, \mathrm{min}} = t_{x(k-1)\mathrm{I}\mathrm{I}} - \Delta t$; $t_{xk\, \mathrm{max}} = t_{x(k-1)\mathrm{I}\mathrm{I}} + \Delta t$; $t_{yk\, \mathrm{min}} = t_{y(k-1)\mathrm{I}\mathrm{I}} - \Delta t$; $t_{y\, \mathrm{max}} = t_{y(k-1)\mathrm{I}\mathrm{I}} + \Delta t$.

3) Определение вейвлет-преобразования по оси t_x для $f_k^0(t_x,t_y)$:

$$\Lambda_{f_k^0, G_{1x}}(b_x, t_y) = \int_{-\infty}^{\infty} f_k^0(t_x, t_y) G_1(t_x - b_x) dt_x.$$
 (15)

4) Определение вейвлет-преобразования по оси t_y для $f_k^0(t_x, t_y)$:

$$\Lambda_{f_k^0, G_{1y}}(t_x, b_y) = \int_{-\infty}^{\infty} f_k^0(t_x, t_y) G_1(t_y - b_y) dt_y.$$
 (16)

5) Расчет координат особой точки как точки пересечения вертикальной и горизонтальной границы:

$$E_{Lk}(t_{xk}, t_{yk}) = \arg\max \left[\Lambda_{f_k^0, G_{1x}}(t_x, t_y) + \Lambda_{f_k^0, G_{1y}}(t_x, t_y) \right]. \tag{17}$$

6) Перемещение центра рамки в точку $\coprod_k (t_{xk\coprod}, t_{yk\coprod})$ для формирования следующей области поиска:

$$t_{xk\coprod} = t_{xk} \; ; \; t_{yk\coprod} = t_{yk} \; . \tag{18}$$

В подсистеме стереозрения устанавливаются две телекамеры так, чтобы их оптические были сонаправлены и нижние стороны фотоприемников находились в одной прямой. Расстояние между их оптическими осями называется базой подсистемы стереозрения и обозначается B_C . При указанной установке особая точка E_{Lk} , найденная в левом изображении, находится в одной и той же горизонтальной линии в правом изображении. В результате сокращается область поиски: не во всем правом изображении, а только в одной горизонтальной линии. При нулевом кадре разработан метод, основанный на корреляционном сопоставлении общих границ, для поиска соответствующего с $f_0^0(t_x, t_y)$ участка

 $f_0^{0r}(t_x, t_y)$ в изображении $f_0^{r}(t_x, t_y)$. Затем проводится стереоотождествление особой точки в потоке изображений для k = 0, 1, 2, 3... по следующей методике.

Mетодика 3. Стереоотождествление особой точки $E_{Lk}(t_{xk},t_{vk})$ с ее сопряженной точкой $E_{Rk}(t_{xk}, t_{yk}^r)$ в потоке изображений.

- 1) Инициализация и цикл. Для $k = 0, 1, 2, 3, \dots$ выполнить шаги 2 5.
- 2) Формировать область поиска как строка в правом изображении:

$$f_k^{0r}(t_y) = \begin{cases} f_k^r(t_{xk}, t_y) & \text{если } t_{yk \min}^r \le t_y \le t_{yk \max}^r \text{ и } t_x = t_{xk}; \\ 0 \text{ во всех остальных случаях,} \end{cases}$$
(19)

$$f_k^{0r}(t_y) = \begin{cases} f_k^r(t_{xk}, t_y) & \text{если } t_{yk \, \text{min}}^r \leq t_y \leq t_{yk \, \text{max}}^r \, \text{и} \, t_x = t_{xk}; \\ 0 \, \text{во всех остальных случаях,} \end{cases}$$
 где $t_{yk \, \text{min}}^r = \begin{cases} t_{y \, \text{min}}^r \, \text{если} \, \, k = 0; \\ t_{y(k-1)\,\text{Ц}}^r - \Delta t \, \, \, \text{если} \, \, k > 0; \end{cases}$ $t_{yk \, \text{max}}^r = \begin{cases} t_{y \, \text{max}}^r \, \text{если} \, \, k = 0; \\ t_{y(k-1)\,\text{Ц}}^r + \Delta t \, \, \, \, \text{если} \, \, k > 0, \end{cases}$

 $t_{y\min}^r,\ t_{y\max}^r$ — минимальный и максимальный номера столбца участка $f_0^{0r}(t_x,t_y)$ в изображении $f_0^r(t_x, t_y)$.

3) Вычислить вейвлет-преобразования для строки изображения $f_k^{0r}(t_v)$ с помощью G_1 :

$$\Lambda_{f_k^{0r}, G_{1y}}(b_y) = \int_{-\infty}^{\infty} f_k^{0r}(t_y) G_1(t_y - b_y) dt_y.$$
 (20)

4) Поиск точки $E_{Rk}(t_{xk},t_{yk}^r)$, ордината которой определяется по максимальному значению функции $\Lambda_{f_{\nu}^{0r},G_{1y}}(b_{y})$:

$$t_{yk}^r = \arg\max \Lambda_{f_k^{0r}, G_{1y}}(b_y). \tag{21}$$

5) Задать рамку с центром $\coprod_k^r (t_{xk\coprod}^r, t_{yk\coprod}^r)$ и размерами $2\Delta t \mathbf{x} 2\Delta t$ пикселей на экране правой телекамеры:

$$t_{xk\coprod}^r = t_{xk} ; \ t_{yk\coprod}^r = t_{yk}^r . \tag{22}$$

Из плоских координат двух сопряженных точек $E_{Lk}(t_{xk},t_{vk})$ и $E_{Rk}(t_{xk},t_{vk}^r)$ определяются координаты особой точки $E_k(x_C^{E_k},\ y_C^{E_k},\ z_C^{E_k})$ в системе координат $O_C X_C Y_C Z_C$ по формуле:

$$E_{k}(x_{C}^{E_{k}} \quad y_{C}^{E_{k}} \quad z_{C}^{E_{k}})^{\theta} = \left(\frac{(N_{y} - 2t_{yk})B_{C}}{2(t_{yk}^{r} - t_{yk})} \quad \frac{(N_{x} - 2t_{xk})B_{C}}{2(t_{yk}^{r} - t_{yk})} \quad \frac{B_{C}\Phi}{\eta(t_{yk}^{r} - t_{yk})}\right)^{\theta}, \quad (23)$$

где η – длина квадратной ячейки фотоприемника; N_x , N_y – количество строк и столбцов фотоприемника соответственно; Ф – фокусное расстояние телекамер.

В Земной системе координат координаты точки Π_k определяются:

$$(x^{E_k} y^{E_k} z^{E_k} 1)^{\theta} = \mathbf{T}^P \mathbf{T}_P^0 \mathbf{T}_0^1(q_1) \mathbf{T}_1^2(q_2) ... \mathbf{T}_{M-1}^M(q_M) \mathbf{T}_M^C (x_N^{E_k} y_N^{E_k} z_N^{E_k} 1)^{\theta}.$$
(24)

Четвертая глава посвящена компьютерной реализации методик и моделированию работы механической системой с системой управления позиционированием рабочего органа с использованием подсистемы стереозрения.

Методика 1 и методика 3 при k=0 выполняются в статическом режиме, и затем программное обеспечение выдает результат поиска на экране и сообщение о готовности к перемещению механической системы. Методика 2 и методика 3 при k>0 выполняются в динамическом режиме, поэтому при ее реализации были приняты меры по сокращению времени обработки изображений. Реализованы методики 1, 2, 3 в среде программирования C++. Показано, что время поиска особой точки зависит от размеров рамки и вычислительной скорости ЭВМ. Для компьютера $Core\ i5$ -2400, оперативная память 4 Γ 6, размер рамки $32*32\ (\Delta t=16)\$ и $64*64\$ ($\Delta t=32$) пикселей, время обработки данных внутри рамки для определения пространственных координат одной особой точки равно $0,530\$ мс и $1,457\$ мс соответственно.

Показано, с использованием ядра G_1 в каждом изображении максимально выделяются 4 особых точки, которые представляют собой точки пересечения 4 части границ ПОО. Методики поиска 3 остальных точек в левой телекамере выполняются аналогично методикам 1 и 2 при замене пары ядер $[G_1(t_x), G_1(t_y)]$ на $[G_1(t_x), -G_1(t_y)]$, $[-G_1(t_x), G_1(t_y)]$, $[-G_1(t_x), -G_1(t_y)]$. При определении стереоотождествления для второй особой точки также используется ядра $G_1(t_y)$ как для первой точки, для двух оставшихся точек используется ядро $-G_1(t_y)$. Указанные особые точки используются как опорные точки, координаты которых в Земной системе координат не меняются по времени и определяются в статическом режиме:

$$(x^{E_k^i} \quad y^{E_k^i} \quad z^{E_k^i} \quad 1)^{\theta} = \boldsymbol{T}_P^0 \boldsymbol{T}_0^1(0) \boldsymbol{T}_1^2(0) ... \boldsymbol{T}_{M-1}^M(0) \boldsymbol{T}_M^C (x_{\tilde{N}}^{E_0^i} \quad y_{\tilde{N}}^{E_0^i} \quad z_{\tilde{N}}^{E_0^i} \quad 1)^{\theta}, \quad (25)$$
 где $i = \overline{1,4}$ - номер особых точек.

Показано, что для определения положения рабочего органа требуется как минимум координаты двух опорных точки. На основе 4 особых точек создаются 6 пар различных особых точек, для каждой пары определяется положение рабочего органа в каждом кадре. Конечный результат о положении рабочего органа принимает по их среднему значению.

Для проверки приведенных методик был проведен компьютерный эксперимент со следующими данными: M=3; N=2; $m_0=10$ кг; $m_1=10$ кг; $m_2=5$ кг; $m_3=4$ кг; $\zeta=64000$ H/м; $\chi=280$ H.с/м. В случае без стабилизации проведены расчеты положения (П-регулятор) для рабочего органа.

Работа функционирования системы без стабилизации моделируется за счет подачи управляющего воздействия, обеспечивающего перемещение рабочего органа из исходной точки по вектору $\Delta \pmb{p} = (\Delta_x^{O_M} \ \Delta_y^{O_M} \ \Delta_z^{O_M})^\theta = (10\ 10\ 10)^\theta$ см. При этом возникает переходный процесс, имеющий перерегулирование по координате z, а по координатам x и y отсутствует перерегулирование.

Для стабилизации рабочего органа был использован ПИД регулятор с параметрами $\Pi = 25,6$; H = 0; H = 0. Подсистемы стереозрения моделируется как датчик обратной связи с чистым запаздыванием 2,12 мс (4 особых точек). В

данном случае также отсутствует перерегулирование координатам x и y. На рис. 3 приведены результаты применения методик 1, 2, 3 для стабилизации рабочего органа по координате z.

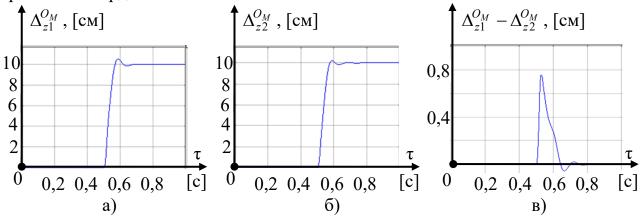


Рис. 3. Переходные процессы рабочего органа по координате z и их разность a – без стабилизации; б – со стабилизацией по изображению; в – разность

Из графиков на рис. З можно делать вывод о том, что при включении подсистемы стереозрения в контур обратной связи система управления работает с повышенной точностью по координате z: перерегулирование уменьшается с 5,2% до 2,1%.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

В диссертации решена научно-техническая задача, имеющая важное народно-хозяйственное значение, и заключающаяся в разработке методик стабилизации местоположения рабочего органа относительно ПОО при выполнении механических операций.

В целом по работе можно сделать следующие выводы.

- 1) На основании анализа типовых механических систем работы с потенциально опасными объектами построена их функциональная схема и показано, что для обеспечения требуемой точности позиционированием рабочего органа необходимо использовать замкнутую схему управления с использованием информации о положении рабочего органа, поучаемой с подсистемы технического зрения.
- 2) Построена математическая модель механической системы, расположенной на подвижном основании, показано, что при перемещении груза из-за нежесткости опор возникают колебания основания, что является главным источником погрешности позиционирования рабочего органа.
- 3) Предложено для компенсации колебания основания корректировать положение рабочего органа относительно основания с использованием в качестве обратной связи сигнал подсистемы технического зрения.
- 4) Предложен метод определения пространственных координат рабочего органа в Земной системе на основании выделения границ ПОО и перерасчета координат, получаемых в подсистеме технического зрения в Земную систему координат.

- 5) Предложен метод выделения границ ПОО и фона с использованием в качестве согласованного фильтра первой производной от Гауссиана.
- 6) На основании оценки временной сложности алгоритма выделения границ разработан ускоренный метод расчета координат ПОО внутри окна и слежения за положением ПОО при перемещении рабочего органа, отличающийся от известных тем, что в каждом кадре формируются рамки, центры которых совпадают с точками на границе ПОО в предыдущем кадре.
- 7) Разработана система управления позиционированием по положению рабочего органа для типовой механической системы, размещенной на подвижном основании; проведен сравнительный анализ переходных процессов положения рабочего органа и выявлено повышение точности позиционирования при использовании подсистемы технического зрения.

Публикации по теме диссертации

Публикации в изданиях из перечня ВАК РФ

- 1. Нгуен В.Ш. Математическое моделирование робота при работе манипулятора // Известия ТулГУ. Сер. Технические науки. Вып. 7. Ч. 1. Тула : Изд-во ТулГУ, 2015. С. 250-256.
- 2. Нгуен В.Ш. Общий подход к построению мобильного робота // Известия ТулГУ. Сер. Технические науки. Вып. 5. Тула : Изд-во ТулГУ, 2015. С. 285 290.
- 3. Нгуен В.Ш. Математическое моделирование робота при работе манипулятора в пространстве // Известия ТулГУ. Сер. Технические науки. Вып. 2. Тула: Изд-во ТулГУ, 2016. С. 165 174.
- 4. Нгуен В.Ш. Стабилизация рабочего органа манипулятора расположенного на нежестком основании // Известия ТулГУ. Сер. Технические науки. Вып. 12. Тула: Изд-во ТулГУ, 2016. С. 245 252.
- 5. Нгуен В.Ш. Обнаружение движений объектов в последовательности изображений / В.Ш. Нгуен, Т.Т. Нгуен // Известия ТулГУ. Сер. Технические науки. Вып. 2. Тула: Изд-во ТулГУ, 2017. С. 133 138.
- 6. Нгуен В.Ш. Определение положения точек в пространстве с использованием стереозрения // Известия ТулГУ. Сер. Технические науки. Вып. 9. Тула: Изд-во ТулГУ, 2017. С. 149 153.
- 7. Нгуен В.Ш. Оптимальный метод для корреляционного сопоставления изображений // Известия ТулГУ. Сер. Технические науки. Вып. 9. Тула: Изд-во ТулГУ, 2017. С. 153 158.
- 8. Нгуен В.Ш. Анализ известных математических моделей точечного источника сигнала в системе оптико-электронного измерителя координат / Т.Н. Нгуен, Т.А. Акименко, С.А. Будков, В.Ш. Нгуен // Известия ТулГУ. Сер. Технические науки. Вып. 4. Тула : Изд-во ТулГУ, 2016. С. 57 65.
- 9. Нгуен В.Ш. Разработка пространственно-динамической модели прохождения светового сигнала по оптическому тракту / Т.Н. Нгуен, Т.А. Акименко, С.А. Будков, В.Ш. Нгуен // Известия ТулГУ. Сер. Технические науки. Вып. 4. Тула: Изд-во ТулГУ, 2016. С. 38 44.

Публикации в прочих изданиях

- 10. Нгуен В.Ш. Алгоритм позиционного управления манипулятором с использованием системы технического зрения // Интеллектуальные и информационные системы: труды Международной научно-технической конференции. Тула: Изд-во ТулГУ, 2017. С. 186 189.
- 11. Нгуен В.Ш. Метод определения движения объекта / В.Ш. Нгуен, Т.З. Нгуен // IX Региональная молодежная научно-практическая конференция Тульского государственного университета «Молодежные инновации». Тула: Изд-во ТулГУ, 2015. Ч. І.— С. 184 185.
- 12. Нгуен В.Ш. Наблюдение объектов в диспергированной среде / В.Ш. Нгуен, Т.А. Акименко, С.А. Будков // Математические методы в технике и технологиях ММТТ-29. 2016. Т. 4. С. 85 86.
- 13. Нгуен В.Ш. Определение пространственных координат объекта в потоке стереоизображений // Труды Российского научного-технического общества радиотехники, электроники и связи им А.С. Попова. Сер. Научные сессии Тульской области организации. Вып. XXXV. Тула, 2017. С. 253 257.
- 14. Нгуен В.Ш. Оценка координат объекта в пространстве с использованием системы стерео зрения // Интеллектуальные и информационные системы: труды Международной научно-технической конференции. Тула: Изд-во ТулГУ, 2017. С. 198 200.
- 15. Нгуен В.Ш. Система управления манипулятором мобильного робота с использованием системы технического зрения // Труды Российского научно-технического общества радиотехники, электроники и связи им А.С. Попова. Сер. Научные сессии Тульской области организации. Вып. XXXV. Тула, 2017. С. 174 178.

Авторское редактирование

Подписано в печать 29.06.18 Формат бумаги 70х100 1/16. Бумага офсетная Усл. печ. л. 1,3. Тираж 100 экз. Заказ 064к.

Отпечатано в Издательстве ТулГУ 300012, г. Тула, просп. Ленина, 95